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Problem 1.

a). This term represents the viscous dissipation due to sheer stresses in the fluid.
The term occurs in the energy equation and in the mechanical energy balance equation.
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The terms of the stress tensor are given by Ty = —,u(—a—] + o, J . Filling in the terms of the
xl' x]'
given flow field gives the following results:
T1=pb, To=pb, w33=-2ub, T2=1T13= 1= 3= 1T31=T3=0 .
For the tensor ( V4);;=A/é; one finds the following results:
R Ce=-Yab, RylH=-Y2b, A,/A=b and all other terms are zero. So follows to evaluate:
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The flow is incompressible.
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For T; one finds:
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¢). This law is valid provided that the following conditions hold:

e law must be applied along a streamline

e viscous forces are negligible, so at high Reynolds numbers, and outside viscous

boundary layers

e flow is incompressible

e gravity forces are the only body forces.
In the case of the circular cylinder it is not possible to stay on a streamline as point B lies in
the wake. Due to vortices there are no steady defined streamlines. Besides that via the
vortices and viscous dissipation occurs in the wake, that contradicts the assumptions of the
Bernoulli equation, namely energy conservation. These viscous forces are also an issue here.

d). A formula for the solar constant is derived in example 16.4-1 in Bird, Stewart and
Lightfoot. The solar constant is given by:
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Filling in the data gives a value of,
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Solar Constant  3:667 2107 5762 [1.384-10
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This is the intensity of the sunlight that arrives on the part of the planet Mars facing the Sun.
For the energy balance there is equilibrium between the absorbed amount of radiation that is

incident from the Sun and the emitted radiation by the surface of Mars.
The energy balance is as follows:

2
J =575 W/m*?

Ipa =eoT, n‘:

Here the parameter Iy is the solar constant and a and e the absorption and emission
coefficients of the surface of Mars and T,, the temperature of the surface of Mars. Under
equilibrium conditions a=e and filling in data gives a temperature of 317 K. This is of course
the maximum temperature. More towards the poles of the planet the incoming amount of
radiation per unit of area decreases rapidly with the cosine of the angle of the normal of the
plane with the 77> vector that connects Mars and the Sun. It even decays faster near the poles
where the partial shadowed area starts (the place where not all sunlight will reach Mars). In
Wikipedia a temperature of 295 K is quoted as maximum. So the estimation with this simple
radiation equilibrium is not too far off.

e). The heat transfer via radiation is given in the text of the excercise. The heat transfer via
conduction follows from Fouriers law:

k
4c = E(Tl -T 2)
Both heat transfers can be set equal to each other giving:

0'(T14 - T24)= S—(Tl —~T,), and this can be rewritten to:

k
‘7(Tl—Tz)(T1+T2)(le+T22)=E(T1”T2)-
So,

k
T+ T\ + T2 )= ——.
(1+ 2)(1 + 2) do

Now using the suggestion as in the text one finds:

T+ AT\E2 +(T + AT )= 5.
(T1+1+ )(1+(1+A)) do

This is equal to:
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Neglecting immediately the terms of order 2 between the brackets, and evaluating the
product and again neglecting terms of order 2 gives:

41"13 1+ _3._..4_]: — __.]E__ .
2T do
So the formula that is wanted is;

T = L_l?__l 2]"1 .
do 4T3 3




When filling in numbers one finds for AT=7.3 K.

There are circumstances that radiation is always dominant namely when:
k1
<1.
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Problem 2.

a). The flow is stable, steady and developed. This means that comparing the flow profile in
different z-cross sections it should be exactly the same. As the amount of mass flux inflow
on the top of the plate is constant it follows immediately that the film thickness & is constant.
Some more argumentation follows from the fact that a thin stable film is considered, so from
the deposition point on the top of the plate the film has the tendency to be accelerated by the
gravity forces, however, viscosity and the shear stresses 7; will prevent it from accelerating
unrestricted. So in the end there will be a force balance of gravity and viscous forces by
which downflow always equals inflow.

b). The control volume that can be used is indicated in the diagram. There are six surfaces
and taking the normals in the positive directions of the axes one finds for the momentum in
the z-direction:
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The second term for the plane normal to y is zero, because in the y-direction there is
symmetry so momentum inflow equals outflow for both surfaces normal to y. For the other
terms we have to rework them in more detail to know if they contribute or not. So:
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Dividing b( WL Ax gives:
Ao, x|, P ZO+L)+pg o
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Taking the limit for Ax—0 gives:
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©). At the interface between film and air the condition for the stress tensor term z,=0 will
hold, or &,/dk=0 at x=4. This is so because the viscosity of the air is much smaller than in
the film so the stresses in the liquid film cannot be large. So there is no gradient in the fluid
velocity v, at the film-air interface, and the velocity more or less resembles the schematically
drawn profile.

The second boundary condition is that at the wall at x=0 the no-slip condition holds or v,=0.

d). One has to insert the components of the terms in the momentum balance and these are the
following expressions holding for Newtons law of viscosity:
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So filling in leads to:
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As is stated the velocity in the x-direction is zero, so all components with v, in the expression
are zero.

The pressure is everywhere py so this means that the pressure term at zy will cancel the term
at zp+L

Because the profile is developed the terms with v, will cancel by the same argument.
Furthermore as the profile is developed the gradient &,/ =0.

The equation that remains now is:
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This is the requested equation.

e). The velocity profile can now be found by integration. Integrating once yields:
iv‘g‘ = _‘%‘x + C1 .
Ox Y7
Because of the boundary condition at the interface x=4 see part c). it immediately follows
that C; = pg,5/u .
Integrating again yields:
:_sz x2 + ,ng5
2u H
Now v,=0 for x=0 and this gives directly that C,=0.
The expression of the velocity profile follows as:
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f). The average velocity is given by integrating the velocity profile over the thickness of the
film and dividing by then film thickness and yields the following expression:
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This gives for the average velocity:
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g). The basic mass balance for an elementary fluid element as indicated in figure 2a that has
a width W in the y-direction is as follows:

= pawnz)=(plvwa), ~(olv.ywo), .

Here on the left hand side of the equality sign is the netto amount of change of mass of the
fluid element. On the right hand side the netto influx and outflux into the element.
Rearranging gives:
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Taking the limit for Az—0 gives:
a5 5(v,)

ot 0z
This is the equation asked for.

h). Filling in the expression for <v,> as answer of f). in the equation just derived gives:
% _ ——6—[5&52) so finally
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This is a quasilinear partial differential equation for & that cannot easily be solved, however,
a solution is given and can be checked by substitution into the differential equation.

Starting from,

1 z .
5(z,t)= \/: it follows that
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So after filling in it is clear that both terms are equal and the given solution satisfies the
differential equation. The solution shows that for large times the film is thinning, and for

increasing z the thickness grows. This seems reasonable and is in agreement with
experiments. It was found by Harold Jeffreys - Proc. Cambr. Phil. Soc. 26(1930)p.204

Problem 3.

a). Using the overall balance for the cylindrical wire and with the assumption that v=0
everywhere, energy conservation for the cylinder reduces to:

(Netto heat flux) + (Heat Generation) = 0

In a formula this is:
—2malq,(a)+I°R=0
Rewriting gives:

2

2mal,

q,(a)=

b). Using the result of a). and equalizing to the heat flux density from the radiation at the
outside one finds:
2 2
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¢). The definition of ¢ is the heat production per unit of volume, so knowing the volume of
the wire 7L it follows mmmediately that:

I’R
P=—s.
L

d). For a thin cylindrical shell in the wire holds the same law as stated in a). but now there is
an influx as well as an outflux of heat. The result is:

(gL, -@nlr+dr)gL),_ . +p2mdrl =0

or

d(rqr)=¢rdr = M:qﬁr = ld(er)=¢ .
dr r o dr

The (middle) equation here above can be integrated and one finds:

aretieC, = q=ipr+S
:

When 1 = 0 is filled in the heat flux should be finite, so C; = 0. The solution for g, is as
follows:

q.(r)=1%¢r.

e). The result in e). can be combined with Fouriers law. This gives:

Integrating this gives:
Ty=-1224¢,
( ) 4 k 2
The value of C; has to be found from the other boundary condition that was found in b),
namely:

[ 12
T(a)=T, = _%%a2+C2=4§;’7‘§Z+T£ . This gives finally:
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The final solution for T(r) is thus:

f 2
T (r) = %fz(az - r2)+ g IR +T0;1 , and using the answer of ¢). it follows further:
k 2roal,
T(r =l—¢— a’—r? +14}£a—+T0;1 .
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